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The cotangent complex

Fix a map R → A of commutative rings.

The R-linear derivations of A with values in J ∈ ModA:

DerR(A, J) := {d : A→ J | d(ab) = ad(b) + bd(a)}.

Corepresented by the module of Kähler differentials Ω1
A|R :

DerR(A, J) ∼= HomModA
(Ω1

A|R , J),

where Ω1
A|R := I/I 2 with I := ker(A⊗R A→ A).

The cotangent complex

LA|R := A⊗A• Ω1
A•|R ,

where A•
'−→ A is a simplicial resolution by free R-algebras.

Tommy Lundemo Logarithmic ring spectra



The cotangent complex

Fix a map R → A of commutative rings.
The R-linear derivations of A with values in J ∈ ModA:

DerR(A, J) := {d : A→ J | d(ab) = ad(b) + bd(a)}.

Corepresented by the module of Kähler differentials Ω1
A|R :

DerR(A, J) ∼= HomModA
(Ω1

A|R , J),

where Ω1
A|R := I/I 2 with I := ker(A⊗R A→ A).

The cotangent complex

LA|R := A⊗A• Ω1
A•|R ,

where A•
'−→ A is a simplicial resolution by free R-algebras.

Tommy Lundemo Logarithmic ring spectra



The cotangent complex

Fix a map R → A of commutative rings.
The R-linear derivations of A with values in J ∈ ModA:

DerR(A, J) := {d : A→ J | d(ab) = ad(b) + bd(a)}.

Corepresented by the module of Kähler differentials Ω1
A|R :

DerR(A, J) ∼= HomModA
(Ω1

A|R , J),

where Ω1
A|R := I/I 2 with I := ker(A⊗R A→ A).

The cotangent complex

LA|R := A⊗A• Ω1
A•|R ,

where A•
'−→ A is a simplicial resolution by free R-algebras.

Tommy Lundemo Logarithmic ring spectra



The cotangent complex

Fix a map R → A of commutative rings.
The R-linear derivations of A with values in J ∈ ModA:

DerR(A, J) := {d : A→ J | d(ab) = ad(b) + bd(a)}.

Corepresented by the module of Kähler differentials Ω1
A|R :

DerR(A, J) ∼= HomModA
(Ω1

A|R , J),

where Ω1
A|R := I/I 2 with I := ker(A⊗R A→ A).

The cotangent complex

LA|R := A⊗A• Ω1
A•|R ,

where A•
'−→ A is a simplicial resolution by free R-algebras.

Tommy Lundemo Logarithmic ring spectra



The cotangent complex

Fix a map R → A of commutative rings.
The R-linear derivations of A with values in J ∈ ModA:

DerR(A, J) := {d : A→ J | d(ab) = ad(b) + bd(a)}.

Corepresented by the module of Kähler differentials Ω1
A|R :

DerR(A, J) ∼= HomModA
(Ω1

A|R , J),

where Ω1
A|R := I/I 2 with I := ker(A⊗R A→ A).

The cotangent complex

LA|R := A⊗A• Ω1
A•|R ,

where A•
'−→ A is a simplicial resolution by free R-algebras.

Tommy Lundemo Logarithmic ring spectra



Hochschild homology

The Hochschild homology of A relative to R

HHR(A) := A⊗L
A⊗L

RA
A.

There is a homotopy pushout

A⊗L
R A A

A HHR(A)

of simplicial commutative algebras augmented over A.
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Hochschild homology

The Hochschild homology of A relative to R

HHR(A) := A⊗L
A⊗L

RA
A.

Taking indecomposables, we obtain a homotopy pushout

LA|R ∗

∗ LA|R [1]

of simplicial A-modules.

Theorem (Quillen, 1970)

There is a spectral sequence

E 2
p,q = πp(

q∧
A

LA|R) =⇒ πp+qHHR(A).
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Logarithmic rings

Definition (Kato, 1989)

A pre-log ring (R,P, β) consists of
a commutative ring R ;
a commutative monoid P ;
a map of commutative monoids β : P → (R, ·); equivalently a
map of commutative rings Z[P]→ R .

A pre-log ring (R,P, β) is a log ring if β̃ in the pullback diagram

β−1GL1(R) GL1(R)

P (R, ·)

β̃

β

is an isomorphism.
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Examples of logarithmic rings

The trivial pre-log structure {1} → (R, ·).
The trivial log structure GL1(R)→ (R, ·).
Pre-log structure 〈p〉 → (Zp, ·) by inclusion of
〈p〉 = {1, p, p2, . . . }. Associated log structure
〈p〉log = 〈p〉 ×GL1(Zp)→ (Zp, ·).
There is a factorization

(Zp,GL1(Zp))→ (Zp, 〈p〉log)→ (Qp,GL1(Qp)).

Any log ring (R,P) gives rise to a factorization

(R,GL1(R))→ (R,P)→ (R[P−1],GL1(R[P−1])),

where R[P−1] := R ⊗Z[P] Z[Pgp] is the localization of (R,P).
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Logarithmic derivations

Fix a map (R,P, β)→ (A,M, α) of pre-log rings.

Definition

A log derivation (d , d [) : (A,M)→ J consists of
a derivation d ∈ DerR(A, J);
a monoid map d [ : M → (J,+)

such that
d [(p) = 0 for p ∈ P ;
d(α(m)) = α(m)d [(m) = α(m)dlog(m).

The log derivations Der(R,P)((A,M), J) are corepresented by the
A-module of log Kähler differentials Ω1

(A,M)|(R,P).
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Repletion

Let K → M be a map of commutative monoids such that
K gp → Mgp is a surjection.

Definition (Kato–Saito (2004), Rognes (2009))

The repletion K rep → M is defined by the pullback square

K rep K gp

M Mgp.

There is a natural map K → K rep.
If (B,K )→ (A,M) is a map of pre-log rings there is a natural
map

(B,K )rep := (Brep
K ,K rep) := (B⊗Z[K ]Z[K rep],K rep)→ (A,M).
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The log Kähler differentials

Examples

N⊕ N +−→ N, (N⊕ N)rep ∼= N⊕ Z pr1−−→ N.
In the same way that the definition of Ω1

A|R involved the map
A⊗R A→ A, the log Kähler differentials Ω1

(A,M)|(R,P) should
involve (A⊗R A,M ⊕P M)→ (A,M). The repletion has
underlying monoid (M ⊕P M)rep ∼= M ⊕Mgp/Pgp pr1−−→ M.

Recall that the notion of a log derivation involved a monoid map
d [ : M → (J,+) such that d [(p) = 0.

Theorem (Kato–Saito (2004))

In the same way that Ω1
A|R
∼= I/I 2, I := ker(A⊗R A→ A), there

is an isomorphism

Ω1
(A,M)|(R,P)

∼= I/I 2, I := ker((A⊗R A)rep
(M⊕PM) → A)

Tommy Lundemo Logarithmic ring spectra



The log Kähler differentials

Examples

N⊕ N +−→ N,

(N⊕ N)rep ∼= N⊕ Z pr1−−→ N.
In the same way that the definition of Ω1

A|R involved the map
A⊗R A→ A, the log Kähler differentials Ω1

(A,M)|(R,P) should
involve (A⊗R A,M ⊕P M)→ (A,M). The repletion has
underlying monoid (M ⊕P M)rep ∼= M ⊕Mgp/Pgp pr1−−→ M.

Recall that the notion of a log derivation involved a monoid map
d [ : M → (J,+) such that d [(p) = 0.

Theorem (Kato–Saito (2004))

In the same way that Ω1
A|R
∼= I/I 2, I := ker(A⊗R A→ A), there

is an isomorphism

Ω1
(A,M)|(R,P)

∼= I/I 2, I := ker((A⊗R A)rep
(M⊕PM) → A)

Tommy Lundemo Logarithmic ring spectra



The log Kähler differentials

Examples

N⊕ N +−→ N, (N⊕ N)rep ∼= N⊕ Z pr1−−→ N.

In the same way that the definition of Ω1
A|R involved the map

A⊗R A→ A, the log Kähler differentials Ω1
(A,M)|(R,P) should

involve (A⊗R A,M ⊕P M)→ (A,M). The repletion has
underlying monoid (M ⊕P M)rep ∼= M ⊕Mgp/Pgp pr1−−→ M.

Recall that the notion of a log derivation involved a monoid map
d [ : M → (J,+) such that d [(p) = 0.

Theorem (Kato–Saito (2004))

In the same way that Ω1
A|R
∼= I/I 2, I := ker(A⊗R A→ A), there

is an isomorphism

Ω1
(A,M)|(R,P)

∼= I/I 2, I := ker((A⊗R A)rep
(M⊕PM) → A)

Tommy Lundemo Logarithmic ring spectra



The log Kähler differentials

Examples

N⊕ N +−→ N, (N⊕ N)rep ∼= N⊕ Z pr1−−→ N.
In the same way that the definition of Ω1

A|R involved the map
A⊗R A→ A,

the log Kähler differentials Ω1
(A,M)|(R,P) should

involve (A⊗R A,M ⊕P M)→ (A,M). The repletion has
underlying monoid (M ⊕P M)rep ∼= M ⊕Mgp/Pgp pr1−−→ M.

Recall that the notion of a log derivation involved a monoid map
d [ : M → (J,+) such that d [(p) = 0.

Theorem (Kato–Saito (2004))

In the same way that Ω1
A|R
∼= I/I 2, I := ker(A⊗R A→ A), there

is an isomorphism

Ω1
(A,M)|(R,P)

∼= I/I 2, I := ker((A⊗R A)rep
(M⊕PM) → A)

Tommy Lundemo Logarithmic ring spectra



The log Kähler differentials

Examples

N⊕ N +−→ N, (N⊕ N)rep ∼= N⊕ Z pr1−−→ N.
In the same way that the definition of Ω1

A|R involved the map
A⊗R A→ A, the log Kähler differentials Ω1

(A,M)|(R,P) should
involve (A⊗R A,M ⊕P M)→ (A,M).

The repletion has
underlying monoid (M ⊕P M)rep ∼= M ⊕Mgp/Pgp pr1−−→ M.

Recall that the notion of a log derivation involved a monoid map
d [ : M → (J,+) such that d [(p) = 0.

Theorem (Kato–Saito (2004))

In the same way that Ω1
A|R
∼= I/I 2, I := ker(A⊗R A→ A), there

is an isomorphism

Ω1
(A,M)|(R,P)

∼= I/I 2, I := ker((A⊗R A)rep
(M⊕PM) → A)

Tommy Lundemo Logarithmic ring spectra



The log Kähler differentials

Examples

N⊕ N +−→ N, (N⊕ N)rep ∼= N⊕ Z pr1−−→ N.
In the same way that the definition of Ω1

A|R involved the map
A⊗R A→ A, the log Kähler differentials Ω1

(A,M)|(R,P) should
involve (A⊗R A,M ⊕P M)→ (A,M). The repletion has
underlying monoid (M ⊕P M)rep ∼= M ⊕Mgp/Pgp pr1−−→ M.

Recall that the notion of a log derivation involved a monoid map
d [ : M → (J,+) such that d [(p) = 0.

Theorem (Kato–Saito (2004))

In the same way that Ω1
A|R
∼= I/I 2, I := ker(A⊗R A→ A), there

is an isomorphism

Ω1
(A,M)|(R,P)

∼= I/I 2, I := ker((A⊗R A)rep
(M⊕PM) → A)

Tommy Lundemo Logarithmic ring spectra



The log Kähler differentials

Examples

N⊕ N +−→ N, (N⊕ N)rep ∼= N⊕ Z pr1−−→ N.
In the same way that the definition of Ω1

A|R involved the map
A⊗R A→ A, the log Kähler differentials Ω1

(A,M)|(R,P) should
involve (A⊗R A,M ⊕P M)→ (A,M). The repletion has
underlying monoid (M ⊕P M)rep ∼= M ⊕Mgp/Pgp pr1−−→ M.

Recall that the notion of a log derivation involved a monoid map
d [ : M → (J,+) such that d [(p) = 0.

Theorem (Kato–Saito (2004))

In the same way that Ω1
A|R
∼= I/I 2, I := ker(A⊗R A→ A), there

is an isomorphism

Ω1
(A,M)|(R,P)

∼= I/I 2, I := ker((A⊗R A)rep
(M⊕PM) → A)

Tommy Lundemo Logarithmic ring spectra



The log Kähler differentials

Examples

N⊕ N +−→ N, (N⊕ N)rep ∼= N⊕ Z pr1−−→ N.
In the same way that the definition of Ω1

A|R involved the map
A⊗R A→ A, the log Kähler differentials Ω1

(A,M)|(R,P) should
involve (A⊗R A,M ⊕P M)→ (A,M). The repletion has
underlying monoid (M ⊕P M)rep ∼= M ⊕Mgp/Pgp pr1−−→ M.

Recall that the notion of a log derivation involved a monoid map
d [ : M → (J,+) such that d [(p) = 0.

Theorem (Kato–Saito (2004))

In the same way that Ω1
A|R
∼= I/I 2, I := ker(A⊗R A→ A),

there
is an isomorphism

Ω1
(A,M)|(R,P)

∼= I/I 2, I := ker((A⊗R A)rep
(M⊕PM) → A)

Tommy Lundemo Logarithmic ring spectra



The log Kähler differentials

Examples

N⊕ N +−→ N, (N⊕ N)rep ∼= N⊕ Z pr1−−→ N.
In the same way that the definition of Ω1

A|R involved the map
A⊗R A→ A, the log Kähler differentials Ω1

(A,M)|(R,P) should
involve (A⊗R A,M ⊕P M)→ (A,M). The repletion has
underlying monoid (M ⊕P M)rep ∼= M ⊕Mgp/Pgp pr1−−→ M.

Recall that the notion of a log derivation involved a monoid map
d [ : M → (J,+) such that d [(p) = 0.

Theorem (Kato–Saito (2004))

In the same way that Ω1
A|R
∼= I/I 2, I := ker(A⊗R A→ A), there

is an isomorphism

Ω1
(A,M)|(R,P)

∼= I/I 2, I := ker((A⊗R A)rep
(M⊕PM) → A)

Tommy Lundemo Logarithmic ring spectra



The log cotangent complex and log Hochschild homology

Definition (Gabber)

The log cotangent complex is the simplicial A-module

L(A,M)|(R,P) := A⊗A• Ω1
(A•,M•)|(R,P)

where (A•,M•)
'−→ (A,M) is a simplicial resolution by free

(R,P)-algebras.

Recall that HHR(A) = A⊗L
A⊗L

RA
A.

Definition
The log Hochschild homology

HH(R,P)(A,M) = A⊗L
(A⊗L

RA)
rep
(M⊕L

P
M)

A.
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A log Quillen spectral sequence and examples

Theorem (Binda–L.–Park–Østvær)

This definition agrees with that of Rognes, and there is a spectral
sequence

E 2
p,q = πp(

q∧
A

L(A,M)|(R,P)) =⇒ πp+qHH(R,P)(A,M).

Examples

Z3 → Z3[
√
3] is tamely ramified. In particular,

Ω1
(Z3[
√

3],〈
√

3〉)|(Z3,〈3〉)
∼= 0.

If x ∈ R is a non-zero divisor, there is a long exact sequence
· · · → HH∗(R/(x))→ HH∗(R)→ HH∗(R, 〈x〉)→ · · ·
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First definition of log ring spectra

Definition
A pre-log ring spectrum (R,P, β) consists of

an E∞-ring R ;
an E∞-space P ;
a map P → Ω∞(R), or equivalently a map S[P]→ R .

Problem: we would like to have pre-log structures 〈x〉 → Ω∞(R)
generated by homotopy classes x ∈ πn(R), e.g. the Bott class
u ∈ π2(ku). This should have the property that

R[x−1] ' R ⊗S[〈x〉] S[〈x〉gp]

But the E∞-space of units GL1(R) only sees units in π0(R)!

Solution (Sagave–Schlichtkrull, 2012)

Consider instead E∞-spaces graded/augmented over
QS0 = Ω∞Σ∞S0. This comes with a good theory of graded units,
group completion, repletion...
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Log ring spectra

Definition
A pre-log ring spectrum (R,P, β) consists of

an E∞-ring R ;
a QS0-graded E∞-space P ;
a map P → Ω∞∗ (R), or equivalently a map S∗[P]→ R .

Fix a map (R,P, β)→ (A,M, α) of pre-log ring spectra.

Definition

TAQR(A) := I/I 2, I := fib(A⊗R A→ A);
THHR(A) = A⊗A⊗RA A.
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Theorem (L., 2020)

These definitions agree with those of Rognes–Sagave–Schlichtkrull.
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Definition

TAQ(R,P)(A,M) := I/I 2, I := fib((A⊗R A)rep
M⊕PM

→ A);

THH(R,P)(A,M) = A⊗(A⊗RA)
rep
M⊕PM

A.

Theorem (L., 2020)

These definitions agree with those of Rognes–Sagave–Schlichtkrull.
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Examples

`p → kup inclusion of Adams summand.

Not étale
=⇒ TAQ`p(kup) 6' ∗. On coefficient rings this induces
Zp[v1]→ Zp[u] sending v1 to up−1, which “looks" log étale. There
is a map of pre-log ring spectra

(`p, 〈v1〉)→ (kup, 〈u〉)

which realizes Lp → KUp on localizations.

Theorem
(`p, 〈v1〉)→ (kup, 〈u〉) is log étale:

TAQ(`p ,〈v1〉)(kup, 〈u〉) ' ∗ [Sagave, 2014]
kup ⊗`p THH(`p, 〈v1〉)

'−→ THH(kup, 〈u〉) [RSS, 2018].
In fact, these two assertions are equivalent [L., 2020].
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Examples

ko→ ku complexification map.

Not étale =⇒ TAQko(ku) 6' ∗.
There is a map of pre-log ring spectra

(ko, 〈β〉)→ (ku, 〈u〉)

which realizes KO→ KU on localizations.

Theorem (Höning–Richter, 2021)

(ko, 〈β〉)→ (ku, 〈u〉) is not log étale: TAQ(ko,〈β〉)(ku, 〈u〉) 6' ∗
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