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@ The cotangent complex and Hochschild homology
© Logarithmic rings
© The log cotangent complex and log Hochschild homology

@ Logarithmic ring spectra
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The cotangent complex

Fix a map R — A of commutative rings.
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The cotangent complex

Fix a map R — A of commutative rings.

@ The R-linear derivations of A with values in J € Mody:

Derg(A, J) :={d: A— J|d(ab) = ad(b) + bd(a)}.
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The cotangent complex

Fix a map R — A of commutative rings.

@ The R-linear derivations of A with values in J € Mody:

Derg(A, J) :={d: A— J|d(ab) = ad(b) + bd(a)}.

o Corepresented by the module of Kahler differentials Q/14|R:

DGI'R(A, J) = HomModA(Q,lq‘R’ J)a
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The cotangent complex

Fix a map R — A of commutative rings.

@ The R-linear derivations of A with values in J € Mody:

Derg(A, J) :={d: A— J|d(ab) = ad(b) + bd(a)}.

o Corepresented by the module of Kahler differentials Q/14|R:
Derg(A, J) = HomMOdA(Qllé\‘R, J),

where Q,14|R = 1/1? with | := ker(A®g A — A).
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The cotangent complex

Fix a map R — A of commutative rings.

@ The R-linear derivations of A with values in J € Mody:

Derg(A, J) :={d: A— J|d(ab) = ad(b) + bd(a)}.

o Corepresented by the module of Kahler differentials Q/14|R:
Derg(A, J) = HomMOdA(Qllé\‘R, J),

where Q,14|R = 1/1? with | := ker(A®g A — A).

@ The cotangent complex
Lagr = A®a, Q}é\.\R?

where A, = A is a simplicial resolution by free R-algebras.
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Hochschild homology
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Hochschild homology

@ The Hochschild homology of A relative to R

HHR(A) =A@ 0 A
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Hochschild homology

@ The Hochschild homology of A relative to R

HHR(A) =A@ 0 A

@ There is a homotopy pushout
AREA ——— A
B N
A ——— HHF(A)

of simplicial commutative algebras augmented over A.
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Hochschild homology

@ The Hochschild homology of A relative to R
HHR(A) =A@ 0 A
o Taking indecomposables, we obtain a homotopy pushout
LA|R —_— X
1l +

* ——— LA|R[1]

of simplicial A-modules.
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Hochschild homology

@ The Hochschild homology of A relative to R
HHR(A) =A@ 0 A
o Taking indecomposables, we obtain a homotopy pushout
LA|R —> ¥

L 4
* ——— LA|R[1]

of simplicial A-modules.

Theorem (Quillen, 1970)

There is a spectral sequence
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Logarithmic rings
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Logarithmic rings

Definition (Kato, 1989)
A pre-log ring (R, P, 3) consists of
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Logarithmic rings

Definition (Kato, 1989)
A pre-log ring (R, P, 3) consists of

@ a commutative ring R;
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Logarithmic rings

Definition (Kato, 1989)
A pre-log ring (R, P, 3) consists of

@ a commutative ring R;

@ a commutative monoid P;
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Logarithmic rings

Definition (Kato, 1989)
A pre-log ring (R, P, 3) consists of

@ a commutative ring R;
@ a commutative monoid P;

@ a map of commutative monoids 3: P — (R, )
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Logarithmic rings

Definition (Kato, 1989)
A pre-log ring (R, P, 3) consists of

@ a commutative ring R;
@ a commutative monoid P;

@ a map of commutative monoids 5: P — (R, -); equivalently a
map of commutative rings Z[P] — R.
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Logarithmic rings

Definition (Kato, 1989)
A pre-log ring (R, P, 3) consists of

@ a commutative ring R;
@ a commutative monoid P;

@ a map of commutative monoids 5: P — (R, -); equivalently a
map of commutative rings Z[P] — R.

A pre-log ring (R, P, 3) is a log ring if 3 in the pullback diagram

BLGL1(R) —E> GL1(R)

| !

P— " (R

is an isomorphism.
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Examples of logarithmic rings
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Examples of logarithmic rings

e The trivial pre-log structure {1} — (R, ).
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Examples of logarithmic rings

e The trivial pre-log structure {1} — (R, ).
@ The trivial log structure GL1(R) — (R,-).
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Examples of logarithmic rings

e The trivial pre-log structure {1} — (R, ).
@ The trivial log structure GL1(R) — (R,-).

@ Pre-log structure (p) — (Zp,-) by inclusion of
(p)={L,p,p%...}.
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Examples of logarithmic rings

e The trivial pre-log structure {1} — (R, ).
@ The trivial log structure GL1(R) — (R,-).

@ Pre-log structure (p) — (Zp,-) by inclusion of
(p) = {1,p, p?,...}. Associated log structure

(p)los
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Examples of logarithmic rings

e The trivial pre-log structure {1} — (R, ).
@ The trivial log structure GL1(R) — (R,-).

@ Pre-log structure (p) — (Zp,-) by inclusion of
(p) = {1,p, p?,...}. Associated log structure
(p)'8 = (p) x GL1(Zp) — (Zp, -).
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Examples of logarithmic rings

e The trivial pre-log structure {1} — (R, ).
@ The trivial log structure GL1(R) — (R,-).

@ Pre-log structure (p) — (Zp,-) by inclusion of
(p) = {1,p, p?,...}. Associated log structure
(p)le = (p) x GL1(Zp) — (Zp, ).

@ There is a factorization

(Zp, GL1(Zp)) = (Zp, (P)'*®) — (Qp, GL1(Qp))-
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Examples of logarithmic rings

e The trivial pre-log structure {1} — (R, ).
@ The trivial log structure GL1(R) — (R,-).

@ Pre-log structure (p) — (Zp,-) by inclusion of
(p) = {1,p, p?,...}. Associated log structure
(p)le = (p) x GL1(Zp) — (Zp, ).

@ There is a factorization

(Zp, GL1(Zp)) = (Zp, (P)'*®) — (Qp, GL1(Qp))-

e Any log ring (R, P) gives rise to a factorization

(R,GL1(R)) = (R, P) = (R[P™'], GL1(R[P™'])),
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Examples of logarithmic rings

e The trivial pre-log structure {1} — (R, ).
@ The trivial log structure GL1(R) — (R,-).

@ Pre-log structure (p) — (Zp,-) by inclusion of
(p) = {1,p, p?,...}. Associated log structure
(p)le = (p) x GL1(Zp) — (Zp, ).

@ There is a factorization

(Zp, GL1(Zp)) = (Zp, (P)'*®) — (Qp, GL1(Qp))-

e Any log ring (R, P) gives rise to a factorization
(R,GL1(R)) = (R, P) — (R[P™'], GL1(R[P™1))),

where R[P™1] := R ®z;p) Z[P#"] is the localization of (R, P).
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Logarithmic derivations

Fix a map (R, P, 3) — (A, M, «) of pre-log rings.
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Logarithmic derivations

Fix a map (R, P, 3) — (A, M, «) of pre-log rings.
A log derivation (d,d”): (A, M) — J consists of
@ a derivation d € Derg(A, J);
@ a monoid map d”: M — (J,+)
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Logarithmic derivations

Fix a map (R, P, 3) — (A, M, «) of pre-log rings.

Definition
A log derivation (d,d”): (A, M) — J consists of
@ a derivation d € Derg(A, J);
o a monoid map d’: M — (J, +)
such that
o d’(p) =0 for p € P;
o d(a(m)) = a(m)d’(m)
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Logarithmic derivations

Fix a map (R, P, 3) — (A, M, «) of pre-log rings.

Definition
A log derivation (d,d”): (A, M) — J consists of
@ a derivation d € Derg(A, J);
o a monoid map d’: M — (J, +)
such that
o d’(p) =0 for p € P;
o d(a(m)) = a(m)d’(m) = a(m)dlog(m).
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Logarithmic derivations

Fix a map (R, P, 3) — (A, M, «) of pre-log rings.

Definition
A log derivation (d,d”): (A, M) — J consists of
@ a derivation d € Derg(A, J);
@ a monoid map d”: M — (J,+)
such that
o d’(p) =0 for p € P;
o d(a(m)) = a(m)d’(m) = a(m)dlog(m).

The log derivations Der(g p)((A, M), J) are corepresented by the
A-module of log Kahler differentials Q%A M)|(R,P)-
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Let K — M be a map of commutative monoids such that
K®8P — MBEP is a surjection.
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Repletion

Let K — M be a map of commutative monoids such that
K®8P — MBEP is a surjection.

Definition (Kato—Saito (2004), Rognes (2009))

The repletion K*P — M is defined by the pullback square

KreP 5 Kep

| |

M —— MeP.
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Repletion
Let K — M be a map of commutative monoids such that
K®8P — MBEP is a surjection.

Definition (Kato—Saito (2004), Rognes (2009))
The repletion K*P — M is defined by the pullback square

KreP 5 Kep

| |

M —— MeP.

@ There is a natural map K — K*°P.
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Repletion
Let K — M be a map of commutative monoids such that
K®8P — MBEP is a surjection.

Definition (Kato—Saito (2004), Rognes (2009))
The repletion K*P — M is defined by the pullback square

KreP 5 Kep

| |

M —— MeP.

@ There is a natural map K — K*°P.

o If (B,K) — (A, M) is a map of pre-log rings
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Repletion
Let K — M be a map of commutative monoids such that
K®8P — MBEP is a surjection.

Definition (Kato—Saito (2004), Rognes (2009))
The repletion K*P — M is defined by the pullback square

KreP 5 Kep

| |

M —— MeP.

@ There is a natural map K — K*°P.

o If (B,K) — (A, M) is a map of pre-log rings there is a natural
map

(B, K)™P := (B, K™P) := (B&yi Z[K™P], K*P) — (A, M).
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The log Kahler differentials
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The log Kahler differentials

e NoN LN,
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The log Kahler differentials

o NoN5HN, (NoNyP=N@Z 2% N.
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The log Kahler differentials

o NoN5HN, (NoNyP=N@Z 2% N.
@ In the same way that the definition of Q,1¢\|R involved the map
ARrA— A,
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The log Kahler differentials

o NoN5HN, (NoNyP=N@Z 2% N.

@ In the same way that the definition of Q,1¢\|R involved the map
A®gr A — A, the log Kahler differentials Q(lA,M)|(R,P) should
involve (A®gr A,M @&p M) — (A, M).
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The log Kahler differentials

o NoN5HN, (NoNyP=N@Z 2% N.

@ In the same way that the definition of Q,1¢\|R involved the map
A®gr A — A, the log Kahler differentials Q(lA,M)|(R,P) should
involve (A®gr A, M @®p M) — (A, M). The repletion has
underlying monoid (M @&p M)™P = M @ Mep /psp 225 g,
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The log Kahler differentials

o NoN5HN, (NoNyP=N@Z 2% N.

@ In the same way that the definition of Q,1¢\|R involved the map
A®gr A — A, the log Kahler differentials Q(lA,M)|(R,P) should
involve (A®gr A, M @®p M) — (A, M). The repletion has
underlying monoid (M @&p M)™P = M @ Mep /psp 225 g,

Recall that the notion of a log derivation involved a monoid map
d”: M — (J,+) such that d”(p) = 0.
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The log Kahler differentials

oNoNLHN (NeN*P=NoZLN.

o In the same way that the definition of Q} AR involved the map
A®gr A — A, the log Kahler differentials Q(A,M)‘(R,P) should
involve (A®gr A, M @®p M) — (A, M). The repletion has
underlying monoid (M @&p M)™P = M @ Mep /psp 225 g,

Recall that the notion of a log derivation involved a monoid map
d”: M — (J,+) such that d”(p) = 0.

Theorem (Kato—Saito (2004))

In the same way that QA‘R =1/1?2, |:=ker(A®rA— A),
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The log Kahler differentials

oNoNLHN (NeN*P=NoZLN.

o In the same way that the definition of Q} AR involved the map
A®gr A — A, the log Kahler differentials Q(A,M)‘(R,P) should
involve (A®gr A, M @®p M) — (A, M). The repletion has
underlying monoid (M @&p M)™P = M @ Mep /psp 225 g,

Recall that the notion of a log derivation involved a monoid map
d”: M — (J,+) such that d”(p) = 0.

Theorem (Kato—Saito (2004))

In the same way that QA‘R ~//12, | :=ker(A®g A — A), there
is an isomorphism

Q(A M)|(R,P) = 1/12, | :=ker((A®g A)E%)@PM) — A)
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The log cotangent complex and log Hochschild homology
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The log cotangent complex and log Hochschild homology

Definition (Gabber)

The log cotangent complex is the simplicial A-module

Liam)|(r,p) = A®a, Q%A.,M.)\(R,P)

where (A,, My) = (A, M) is a simplicial resolution by free
(R, P)-algebras.

Tommy Lundemo Logarithmic ring spectra



The log cotangent complex and log Hochschild homology

Definition (Gabber)

The log cotangent complex is the simplicial A-module

Liam)|(r,p) = A®a, Q%A.,M.)\(R,P)

where (A,, My) = (A, M) is a simplicial resolution by free
(R, P)-algebras.

Recall that HHR(A) = A ®H;\®H;?A A.
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The log cotangent complex and log Hochschild homology

Definition (Gabber)

The log cotangent complex is the simplicial A-module

Liam)|(r,p) = A®a, Q%A.,M.)\(R,P)

where (A,, My) = (A, M) is a simplicial resolution by free
(R, P)-algebras.

Recall that HHR(A) = AL | A

ARLA

Definition

The log Hochschild homology

HRPY (A, M) = A®ppop ayer A

(MaEM)
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A log Quillen spectral sequence and examples

Theorem (Binda—L.—Park—@stvzer)

This definition agrees with that of Rognes, and there is a spectral
sequence
q
Erq=mo(\Lamrp) = mprgHHEPI(A M),
A
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A log Quillen spectral sequence and examples

Theorem (Binda—L.—Park—@stvzer)

This definition agrees with that of Rognes, and there is a spectral
sequence
q
Erq=mo(\Lamrp) = mprgHHEPI(A M),
A

o Z3 — Z3[\/3] is tamely ramified.
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A log Quillen spectral sequence and examples

Theorem (Binda—L.—Park—@stvzer)

This definition agrees with that of Rognes, and there is a spectral
sequence
q
Erq=mo(\Lamrp) = mprgHHEPI(A M),
A

o Z3 — 7Z3[\/3] is tamely ramified. In particular,

1 ~
Q(Zs[\/§17<\/§>)|(23,<3>) =0
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A log Quillen spectral sequence and examples

Theorem (Binda—L.—Park—@stvzer)

This definition agrees with that of Rognes, and there is a spectral
sequence
q
Erq=mo(\Lamrp) = mprgHHEPI(A M),
A

o Z3 — 7Z3[\/3] is tamely ramified. In particular,

1 ~
Q(Zs[\/§17<\/§>)|(23,<3>) =0

@ If x € R is a non-zero divisor, there is a long exact sequence
-+ — HH4(R/(x)) — HH,(R) — HH.(R, (x)) — - -

Tommy Lundemo Logarithmic ring spectra



First definition of log ring spectra
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First definition of log ring spectra

Definition

A pre-log ring spectrum (R, P, 3) consists of
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First definition of log ring spectra

Definition

A pre-log ring spectrum (R, P, 3) consists of
@ an E.-ring R;
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First definition of log ring spectra

Definition

A pre-log ring spectrum (R, P, 3) consists of
@ an E.-ring R;

@ an [E,-space P;
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First definition of log ring spectra

Definition

A pre-log ring spectrum (R, P, 3) consists of
@ an E.-ring R;
@ an [E,-space P;
@ amap P — Q>(R),
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First definition of log ring spectra

Definition

A pre-log ring spectrum (R, P, 3) consists of
@ an E.-ring R;
@ an [E,-space P;
@ a map P — Q%°(R), or equivalently a map S[P] — R.
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First definition of log ring spectra

Definition

A pre-log ring spectrum (R, P, 3) consists of
@ an E.-ring R;
@ an [E,-space P;
@ a map P — Q%°(R), or equivalently a map S[P] — R.

Problem: we would like to have pre-log structures (x) — Q*°(R)
generated by homotopy classes x € m,(R), e.g. the Bott class
u € ma(ku).
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First definition of log ring spectra

Definition

A pre-log ring spectrum (R, P, 3) consists of
@ an E.-ring R;
@ an [E,-space P;
@ a map P — Q*(R), or equivalently a map S[P] — R.

Problem: we would like to have pre-log structures (x) — Q*°(R)
generated by homotopy classes x € m,(R), e.g. the Bott class
u € mp(ku). This should have the property that

R[x™"] ~ R ®s[1x)) S[(x)#"]
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First definition of log ring spectra

Definition

A pre-log ring spectrum (R, P, 3) consists of
@ an E.-ring R;
@ an [E,-space P;

@ a map P — Q%°(R), or equivalently a map S[P] — R.

Problem: we would like to have pre-log structures (x) — Q*°(R)
generated by homotopy classes x € m,(R), e.g. the Bott class
u € mp(ku). This should have the property that

R[x™"] ~ R ®s[1x)) S[(x)#"]
But the E-space of units GL1(R) only sees units in mo(R)!
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First definition of log ring spectra

Definition

A pre-log ring spectrum (R, P, 3) consists of
@ an E.-ring R;
@ an [E,-space P;
@ a map P — Q*(R), or equivalently a map S[P] — R.

Problem: we would like to have pre-log structures (x) — Q*°(R)
generated by homotopy classes x € m,(R), e.g. the Bott class
u € mp(ku). This should have the property that

R[x™"] ~ R ®s[1x)) S[(x)#"]
But the E-space of units GL;(R) only sees units in mo(R)!
Solution (Sagave—Schlichtkrull, 2012)

Consider instead E,-spaces graded/augmented over
QSO = Q°x>s0,
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First definition of log ring spectra

Definition

A pre-log ring spectrum (R, P, 3) consists of
@ an E.-ring R;
@ an [E,-space P;
@ a map P — Q*(R), or equivalently a map S[P] — R.

Problem: we would like to have pre-log structures (x) — Q*°(R)
generated by homotopy classes x € m,(R), e.g. the Bott class
u € mp(ku). This should have the property that
R[x™"] ~ R ®s[1x)) S[(x)#"]
But the E-space of units GL1(R) only sees units in 7p(R)!

Solution (Sagave—Schlichtkrull, 2012)

Consider instead E,-spaces graded/augmented over
QS = Q¥ >S50 This comes with a good theory of graded units,
group completion, repletion...
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Log ring spectra
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Log ring spectra

Definition

A pre-log ring spectrum (R, P, 3) consists of
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Log ring spectra

Definition

A pre-log ring spectrum (R, P, 3) consists of
@ an E.-ring R;
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Log ring spectra

Definition

A pre-log ring spectrum (R, P, 3) consists of
@ an E.-ring R;
o a QS%-graded E.-space P;
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Log ring spectra

Definition

A pre-log ring spectrum (R, P, 3) consists of
@ an E.-ring R;
o a QS%-graded E.-space P;
e amap P — Q°(R),
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Log ring spectra

Definition

A pre-log ring spectrum (R, P, 3) consists of
@ an E.-ring R;
o a QS%-graded E.-space P;
e a map P — Q°(R), or equivalently a map S,[P] — R.
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Log ring spectra

Definition

A pre-log ring spectrum (R, P, 3) consists of
@ an E.-ring R;
o a QS%-graded E.-space P;
e a map P — Q°(R), or equivalently a map S,[P] — R.

Fix a map (R, P, 3) — (A, M, a) of pre-log ring spectra.

Tommy Lundemo Logarithmic ring spectra



Log ring spectra

Definition

A pre-log ring spectrum (R, P, 3) consists of
@ an E.-ring R;
o a QS%-graded E.-space P;
e a map P — Q°(R), or equivalently a map S,[P] — R.

Fix a map (R, P, 3) — (A, M, a) of pre-log ring spectra.

Definition

o TAQR(A) :=1/12, | :=fib(A®r A — A);
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Log ring spectra

Definition

A pre-log ring spectrum (R, P, 3) consists of
@ an E.-ring R;
o a QS%-graded E.-space P;
e a map P — Q°(R), or equivalently a map S,[P] — R.

Fix a map (R, P, 3) — (A, M, a) of pre-log ring spectra.

Definition

o TAQR(A):=1/1?, |:=fib(ARrA = A);
o THHR(A) = A®agqa A.
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Log ring spectra

Definition

A pre-log ring spectrum (R, P, /3) consists of
@ an E..-ring R;
o a QS%graded E..-space P;
@ a map P — Q3%°(R), or equivalently a map S.[P] — R.

Fix a map (R, P, ) — (A, M, «) of pre-log ring spectra.

Definition

o TAQRPIA M) :=1/12, I :=1fib(A®r A 1y — A
R,P _
o THHRPI(A M) = A® (a0, A A
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Log ring spectra

Definition

A pre-log ring spectrum (R, P, /3) consists of
@ an E..-ring R;
o a QS%graded E..-space P;
@ a map P — Q3%°(R), or equivalently a map S.[P] — R.

Fix a map (R, P, ) — (A, M, «) of pre-log ring spectra.

Definition

o TAQRPIA M) :=1/12, I :=1fib(A®r A 1y — A
R,P _
o THHRPI(A M) = A® (a0, A A

Theorem (L., 2020)

These definitions agree with those of Rognes—Sagave—Schlichtkrull.
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¢ — kup inclusion of Adams summand.
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¢p — ku,, inclusion of Adams summand. Not étale
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¢p — ku,, inclusion of Adams summand. Not étale
— TAQ%(kup) % *.
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¢p — ku,, inclusion of Adams summand. Not étale
— TAQ%(ku,) % *. On coefficient rings this induces
Zp[vi] — Zp[u] sending vy to uP~1,
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¢p — ku,, inclusion of Adams summand. Not étale
— TAQ%(ku,) % *. On coefficient rings this induces
Zp[va] — Zp[u] sending vi to uP~1, which “looks" log étale.
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¢p — ku,, inclusion of Adams summand. Not étale

— TAQ%(ku,) % *. On coefficient rings this induces

Zp[va] — Zp[u] sending vi to uP~1, which “looks" log étale. There
is a map of pre-log ring spectra

(€p, (v1)) = (kup, (u))

which realizes L, — KU, on localizations.
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¢p — ku,, inclusion of Adams summand. Not étale

— TAQ%(ku,) % *. On coefficient rings this induces

Zp[va] — Zp[u] sending vi to uP~1, which “looks" log étale. There
is a map of pre-log ring spectra

(€p, (v1)) = (kup, (u))

which realizes L, — KU, on localizations.

(L, (v1)) — (kup, (u)) is log étale:
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¢p — ku,, inclusion of Adams summand. Not étale

— TAQ%(ku,) % *. On coefficient rings this induces

Zp[va] — Zp[u] sending vi to uP~1, which “looks" log étale. There
is a map of pre-log ring spectra

(€p, (v1)) = (kup, (u))

which realizes L, — KU, on localizations.

(L, (v1)) — (kup, (u)) is log étale:
o TAQU» (1) (ku,, (u)) ~ * [Sagave, 2014]
o ku, ®¢, THH({p, (1)) = THH(ku,, (u)) [RSS, 2018].
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¢p — ku,, inclusion of Adams summand. Not étale

— TAQ%(ku,) % *. On coefficient rings this induces

Zp[va] — Zp[u] sending vi to uP~1, which “looks" log étale. There
is a map of pre-log ring spectra

(€p, (v1)) = (kup, (u))

which realizes L, — KU, on localizations.

(L, (v1)) — (kup, (u)) is log étale:
o TAQU» (1) (ku,, (u)) ~ * [Sagave, 2014]

o ku, ®;, THH(fp, (v1)) => THH(ku,, (u)) [RSS, 2018].
In fact, these two assertions are equivalent [L., 2020].
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ko — ku complexification map.
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ko — ku complexification map. Not étale = TAQ*°(ku) 2 *.
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ko — ku complexification map. Not étale = TAQ*°(ku) 2 *.
There is a map of pre-log ring spectra

(ko, (£)) = (ku, {u))

which realizes KO — KU on localizations.
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ko — ku complexification map. Not étale = TAQ*°(ku) 2 *.
There is a map of pre-log ring spectra

(ko, (8)) — (ku, (u))
which realizes KO — KU on localizations.
Theorem (Honing—Richter, 2021)

(ko, (B)) — (ku, (u)) is not log étale:
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ETNTIES

ko — ku complexification map. Not étale = TAQ*°(ku) 2 *.
There is a map of pre-log ring spectra

(ko, (8)) — (ku, (u))
which realizes KO — KU on localizations.
Theorem (Honing—Richter, 2021)
(ko, (B)) — (ku, (u)) is not log étale: TAQX®) (ku, (u)) 2 *
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