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Logarithmic geometry [7] is a variant of algebraic geometry in which the notions of
étaleness and smoothness are less rigid than usual. For example, tamely ramified
extensions of (complete) discrete valuation rings (in mixed characteristic with
perfect residue fields) participate in log étale morphisms, despite not being étale.

When advertised to homotopy theorists, log structures are often described as
“intermediate localizations.” By definition, a (pre-)log ring (R,P, β) consists of
a commutative ring R, a commutative monoid P , and a map β : P → (R, ·) of
commutative monoids. If R is a discrete valuation ring, a choice of uniformizer
πR gives rise to a log structure 〈πR〉 → (R, ·) on R, simply by including the mul-
tiplicative monoid 〈πR〉 := {π0

R, π
1
R, . . . } in R. We think of the log ring (R, 〈πR〉)

as an intermediate localization in-between R and the fraction field F := R[1/πR].

Logarithmic THH. The perspective of log structures as “intermediate localiza-
tions” is reinforced by THH-cofiber sequences constructed by Rognes–Sagave–
Schlichtkrull [13]. For example, dévissage implies that there is a fiber sequence

K(Fp)→ K(Z)→ K(Z[1/p])

in algebraic K-theory. This does not work for THH: One cannot identify the fiber
of THH(Z)→ THH(Z[1/p]) with THH(Fp). The introduction of [4] highlights this
point very eloquently.

One can associate to any log ring (R,P ) a commutative R-algebra in spectra
THH(R,P ) [12, Definition 8.11]. It is shown in [13, Theorem 5.5, Example 5.7]
that this construction participates in a cofiber sequence

THH(R)→ THH(R, 〈x〉)→ THH(R/x)[1]

for any non-zero divisor x in R. The available constructions of the cofiber sequence
are not an instance of dévissage but rather come to life by a direct analysis of
the map THH(R) → THH(R, 〈x〉). In particular, the construction of the cofiber
sequences makes no reference to Morita-invariance type properties of logarithmic
THH (at the time of writing, no such property is known to the author).

Consequently, the relationship between logarithmic THH and algebraic K-
theory is not at all clear. Nonetheless, the more flexible notion of étaleness in
log geometry is useful in this context. For example, there is a base-change formula

A⊗R THH(R)
'−→ THH(A)

for étale morphisms of commutative rings R → A (by e.g. [11, Theorem 1.3]).
Many examples of log étale morphisms (R,P )→ (A,M) give rise to a base-change
formula

A⊗R THH(R,P )
'−→ THH(A,M)

by (the proof of) [8, Theorem 1.11]; this covers the example of tamely ramified
extensions of discrete valuation rings. The analogous property for log ring spectra
has proven useful for both THH and K-theory computations, as we explain below.
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Logarithmic ring spectra. Rognes [12] initiated the study of log structures in
the context of structured ring spectra. The role of commutative rings is now played
by E∞-rings, while that of the monoid is often played by the “QS0-graded E∞-
spaces” (or commutative J -space monoids) of Sagave–Schlichtkrull [16]. These
categories participate in an adjunction which we will denote by

SJ [−] : E∞-Spaces/QS0 � CAlg(Sp) : ΩJ (−),

and a (pre-)log ring spectrum (R,P, β) is thus an E∞-ring R, a QS0-graded E∞-
space P , and a map β : P → ΩJ (P ). There are important variations of this
definition: Replacing QS0 by BO× Z plays a role in Sagave–Schlichtkrull’s [17].

In the present setup, well-behaved log structures (R, 〈x〉) arise from homotopy
classes x ∈ πd(R) that are “strict” in a certain sense: We refer to [15, Construction
4.2] for the concrete construction. Examples include connective covers of periodic
ring spectra with log structures generated by their periodicity classes; e.g. the
connective Adams summand (`p, 〈v1〉), connective complex K-theory (ku, 〈u〉),
and connective real K-theory (ko, 〈β〉).

To a log ring spectrum (R,P ), Rognes [12, Definition 8.11] and Rognes–Sagave–
Schlichtkrull [13, Definition 4.6] associate a commutative R-algebra in spectra
THH(R,P ). In the examples (R, 〈x〉) of interest, this construction participates in
cofiber sequences

THH(R)→ THH(R, 〈x〉)→ THH(R//x)[1]

by [13, Theorem 1.1]. While `p//v1 ' Zp and ku//u ' Z, we have ko//β ' τ≤7ko,
which highlights the lack of reliance on dévissage in the construction of the cofiber
sequences in logarithmic THH. Related to this point are the cofiber sequences

THH(BP〈n〉)→ THH(BP〈n〉, 〈vn〉)→ THH(BP〈n− 1〉)[1]

obtained from a corresponding sequence for MUP ([17, Example 8.6]) by using the
MU[x]-algebra stuctures on BP〈n〉 of Hahn–Wilson [6], as sketched in e.g. [5, Re-
mark 9.8]. Results of Barwick–Lawson [2] and Antieau–Barthel–Gepner [1] suggest
that this is an apparent mismatch with the corresponding sequences in algebraic
K-theory, which adds to the difficulty of giving K-theoretic interpretations of the
cofiber sequences in logarithmic THH.

Logarithmic deformation theory. To any map of log ring spectra one can
associate a log cotangent complex L(A,M)/(R,P ) [12, 15, 8]. Analogously to the
situation for ordinary THH (cf. the argument of [11]), its vanishing implies base-
change

A⊗R THH(R,P )
'−→ THH(A,M)

in logarithmic THH in the connective case [8, Theorem 1.7]. By [15, Theorem
1.6], the log cotangent complex associated to the inclusion of the Adams summand
vanishes, and so we obtain that

kup ⊗`p THH(`p, 〈v1〉)
'−→ THH(kup, 〈u〉);

this is also the content of [14, Theorem 1.5]. This is computationally useful in
conjunction with the cofiber sequences in logarithmic THH: In [14], this is used to
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recover Ausoni’s computation of V (1)∗THH(kup), while Bayındır [3] has used these
methods to recover Ausoni’s computation of T (2)∗K(kup) in terms of T (2)∗K(`p).

The presence of a cotangent complex and the more flexible notion of étaleness in
log geometry naturally begs the question of an obstruction theory with vanishing
obstruction groups for log étale extensions. As a first step, we would like to
understand the logarithmic analog of the tower of square-zero extensions

· · · → τ≤2(R)→ τ≤1(R)→ τ≤0(R) ' π0(R)

for a connective ring spectrum R, and how to set up an inductive lifting procedure
starting from a formally étale map out of its bottom-most stage.

One should first understand the analog of square-zero extensions for log ring
spectra. At this point, there is some tension between

(1) the natural guess from a log geometric perspective, where a square-zero

extension (R̃, P̃ )→ (R,P ) is one of underlying commutative rings that is

strict ; for the purposes of this exposition, one may read this as P̃ ' P .1

(2) the natural guess from the perspective of derived/higher algebra, where

one would ask that a square-zero extension (R̃, P̃ )→ (R,P ) is pulled back
from a “log derivation” (d, d[) : (R,P ) → (R ⊕ J [1], P ⊕ J [1]); these are
corepresented by the log cotangent complex.

Theorem. These two notions of log square-zero extensions agree.

That (2) implies (1) appears in [9, Chapter 4], while the converse is currently
being written up. For a log ring spectrum (R,P ), this gives rise to an essentially
unique tower

· · · → (τ≤2(R), P )→ (τ≤1(R), P )→ (π0(R), P )

of log square-zero extensions compatible with the Postinkov tower. This is quite
natural from a log geometric perspective: For instance, the “residue field” asso-
ciated to the log ring (A, 〈πA〉) for a discrete valuation ring A is (A/πA, 〈πA〉),
where all positive powers of πA map to zero. This is the standard log point, of
which we consider the log ring spectrum (π0(R), P ) to be an analog.

For example, if (R,P ) = (`p, 〈v1〉), let us write 〈 p−1
√
v1〉 for the object called E

in [15, Proof of Prop 4.15]. Then (Zp, 〈v1〉)→ (Zp⊗SJ [〈v1〉] SJ [〈 p−1
√
v1〉], 〈 p−1

√
v1〉)

is formally log étale, and the underlying ring spectrum of the target is equivalent to
Zp⊗`p kup. Formally log étale maps lift uniquely along log square-zero extensions
[9, Theorem 4.1.0.3]. We are currently pursuing more structured statements relat-
ing the categories formally log étale of (R,P )- and (π0(R), P )-algebras. For this,
we extend Lurie’s cotangent complex formalism [10, Section 7.3] to the context
of log geometry: The expected identification of the fibers of the resulting replete
tangent bundle T rep

Log is available in [9, Proposition 5.1.0.1].

1Making this precise would require making the distinction and passage between pre-log and

log ring spectra explicit. The definition appears in e.g. [12, Definition 7.25].
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